Research Experience for K-5 Educators to Enrich the STEM Ecosystem in Alachua County

Peyton Turinetti¹, Yuan Li¹, Andrés Rubiano², Sarah Furtney¹, Renee Simmons³, Chelsey Simmons²

- ¹J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida
- ²Department of Mechanical and Aerospace Engineering, University of Florida
- ³College of Education, University of Florida

ENGINEERS for LIFE. UF FLORIDA

Introduction

- The 4th MRET at UF (see Figure 1 for all participants) that brings together engineering research_scientists, K-5 educators, and industry professionals.
- © Elementary educators' **beliefs** and **attitudes** toward **STEM** have a significant impact on their **students**' attitudes and **confidence** in STEM subjects.
- © Despite this, there has previously been **inadequate exposure** for K-5 **educators** to learn and integrate STEM concepts and then confidently **support STEM interests** and skills in their classrooms.

Methodology

- (2) Year 1-3: **Decentralized** experience at different research labs.
- Year 4: Centralized teaching lab approach for all educators.
- K-5 educators were exposed to tissue engineering concepts:
 - Mechanically characterize tissue samples
- Hydrogel fabrication
- Using engineering design principles to mimic native tissue properties

Figure 1: Participants of the 4th MRET at UF

Figure 2: K-5 Educators Exploring Tissue Engineering in a Centralized Teaching Lab

Results

Educators participated in an **authentic** engineering experience in the controlled **teaching laboratory** environment for **morning** sessions, followed by **afternoon** sessions **dedicated** to **curriculum development**.

This structured **engineering** and **curriculum** experience facilitated technical and PD relationships amongst all educators and teaching team members.

Conclusion

- Translate the engineering design process into classrooms such as tissue characterization, prototyping, data analysis, and iterative design.
- Elementary educators are able to confidently teach STEM concepts and lay the foundation of STEM interest and skills for their students.
- Empowered individual educators with the skills required to impact the larger public education community.
- Successfully recruited representatives from 68% of Alachua
 County elementary schools to participate in this program and will continue to
 expand our efforts in our goals of enriching the STEM ecosystem.

Figure 3: Illustrations of the Morning and Afternoon Sessions

Figure 4: Facilitating STEM Interests in the Next Generation of Students



Figure 5: Alachua Elementary Schools Coverage Map

The goal of the program is to *empower* individual K-5 educators to translate the engineering design process into their classrooms to impact the larger public education community.

Scan the QR code for Abstract

